Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
n recent years, we have been enhancing and updating gem5’s GPU support. First, we have enhanced gem5’s GPU support for ML workloads such that gem5 can now run. Moreover, as part of this support, we created, validated, and released a Docker image that contains the proper software and libraries needed to run GCN3 and Vega GPU models in gem5. With this container, users can run the gem5 GPU model, as well as build the ROCm applications that they want to run in the GPU model, out of the box without needing to properly install the appropriate ROCm software and libraries. Additionally, we have updated gem5 to make it easier to reproduce results, including releasing support for a number of GPU workloads in gem5-resources and enabling continuous integration testing on future GPU commits. However, in an effort to provide sufficient coverage, the cur- rent testing support for GPU tests requires significant runtime both for the nightly and weekly regression tests. Currently most of these regression tests test the GPU SE mode support, since GPU FS mode support is still nascent. Unfortunately, much of this time is spent parsing input files to create arrays and other data structures that the GPU subsequently computes on. Although SE mode does not simulate the system calls needed to read these input files, nevertheless this still represents a significant overhead that increases runtime and prevents other tests (potentially providing additional coverage) from being run in that same timeframe. In an effort to address this, in the work we have been working on utilizing SE mode’s avoiding modeling system calls to speed up the runtime of the GPU regression tests. Specifically, we redesign the input reading phase of these GPU tests to create and use mmap’d files for their input arrays (which SE mode completes all at once) instead of reading in the files entry by entry. In doing so, we see significant reductions in runtime of at least 29%more » « less
-
In recent years, we have been enhancing and updating gem5’s GPU support. First, we have enhanced gem5’s GPU support for ML workloads such that gem5 can now run. Moreover, as part of this support, we created, validated, and released a Docker image that contains the proper software and libraries needed to run GCN3 and Vega GPU models in gem5. With this container, users can run the gem5 GPU model, as well as build the ROCm applications that they want to run in the GPU model, out of the box without needing to properly install the appropriate ROCm software and libraries. Additionally, we have updated gem5 to make it easier to reproduce results, including releasing support for a number of GPU workloads in gem5-resources and enabling continuous integration testing on future GPU commits. However, in an effort to provide sufficient coverage, the cur- rent testing support for GPU tests requires significant runtime both for the nightly and weekly regression tests. Currently most of these regression tests test the GPU SE mode support, since GPU FS mode support is still nascent. Unfortunately, much of this time is spent parsing input files to create arrays and other data structures that the GPU subsequently computes on. Although SE mode does not simulate the system calls needed to read these input files, nevertheless this still represents a significant overhead that increases runtime and prevents other tests (potentially providing additional coverage) from being run in that same timeframe. In an effort to address this, in the work we have been working on utilizing SE mode’s avoiding modeling system calls to speed up the runtime of the GPU regression tests. Specifically, we redesign the input reading phase of these GPU tests to create and use mmap’d files for their input arrays (which SE mode completes all at once) instead of reading in the files entry by entry. In doing so, we see significant reductions in runtime of at least 29%more » « less
An official website of the United States government

Full Text Available